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Abstract

Entire matrix-valued functions of a complex argument (entire matrix pencils) are considered.
Bounds for spectral variations of pencils are derived. In particular, approximations of entire pen-
cils by polynomial pencils are investigated. Our results are new even for polynomial pencils.
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1. Introduction and notation

As it is well-known, matrix pencils play an essential role in various applications, see,
for instance[4,11,17,15] and references therein. Perturbations of the spectrum of matrix
pencils were investigated in many works, cf. [1,8–10,13], etc. Mainly, polynomial pencils
were considered. In particular, the paper [1] is devoted tolinear matrix pencils. Besides,
an error bound for eigenvalues is established. In [9], stability of invariant subspaces of
regular matrix pencils is considered. In [10], upper and lowerboundsare derived for the
absolute values of the eigenvalues of matrix polynomials. The bounds are based on norms
of coefficient matrices. They generalize some well-known bounds for scalar polynomials
and single matrices. In [13], and references given therein, perturbations of eigenvalues of
diagonalizable matrix pencilswith real spectraare investigated.

� This research was supported by the Kamea Fund of Israel.
E-mail address:gilmi@bezeqint.net.

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.06.004

http://www.elsevier.com/locate/jat
mailto:gilmi@bezeqint.net


116 M.I. Gil’ / Journal of Approximation Theory 136 (2005) 115–128

Recall that the variation of the zeros of general analytic functions under perturbations
was investigated, in particular, by Rosenbloom[16]. He established conditions that provide
the existence of zeros of a perturbed function in a given domain. In [5], a new approach to
perturbations of scalar-valued entire functions was suggested. It is based on estimates for
the norm of the resolvent of a Hilbert–Schmidt operator.
In the present paper, we consider spectrum perturbations of entire matrix pencils. Espe-

cially, we investigate approximations of entire pencils by polynomial pencils. Our results
are new even in the case of polynomial pencils. They generalize the main result from [5]. It
should be noted that the generalization requires additional mathematical tools.A few words
about the contents. In Section 2 some auxiliary results are collected. The main result of the
paper—Theorem 3.1—is presented in Section 3. The proof of Theorem 3.1 is presented in
Section 4. Perturbations of polynomial matrix pencils are discussed in Section 5. In the case
of polynomial pencils we improve Theorem 3.1. In Section 6, an example is given.
LetCn be a Euclidean space with the Euclidean norm‖.‖ and the unit matrixIn. LetAk,

Bk (k = 1,2, . . .) ben × n-matrices. Consider the matrix pencils

F(�) =
∞∑
k=0

Ak�
k

(k!)� (A0 = In, � ∈ C) (1.1a)

and

H(�) =
∞∑
k=0

Bk�
k

(k!)� (B0 = In, � ∈ C) (1.1b)

with a positive

��1.

Assume that
∞∑
k=0

‖Ak‖2 < ∞,

∞∑
k=0

‖Bk‖2 < ∞. (1.2)

Thus,

�F :=
∞∑
k=1

AkA
∗
k

is ann × n-matrix. The asterisk means the adjointness.
Recall that a family of matrices of the form{ ∞∑

k=0

Ak�
k : � ∈ C

}
,

whereAk; k = 0, 1, . . . are constant matrices, is called an entire pencil, if the series
converges for arbitrary finite� ∈ C. In particular,

{A0 + �A1 : � ∈ C}
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is called alinear pencil. PutMF(r) := max|z|=r ‖F(z)‖(r > 0). The limit

� (F ) := lim
r→∞

ln ln MF(r)

ln r

is the order ofF. Relations (1.1), (1.2) mean that we consider finite order entire pencils.
Indeed, if� = 1, then we have�(F )�1. If � < 1, then due to Hólder inequality, from (1.1a)
it follows that

‖F(�)‖ � m0

∞∑
k=0

|�|k
(k!)� �m0

[ ∞∑
k=0

2−kp′
]1/p′ [ ∞∑

k=0

|2�|k/�
k!

]�

� m1e
�|2�|1/� (� + 1/p′ = 1),

where

m0 = sup
k

‖Ak‖, m1 = m0

[ ∞∑
k=0

2−kp′
]1/p′

.

So functionF has order no more than 1/�. We writeF andH in the form (1.1), since it
allows us to formulate the main result of the paper.
A zerozk(F ) of detF(z) is called a characteristic value ofF. Our main problem is: ifAk

andBk are close, how close are the characteristic values ofH to those ofF? Everywhere in
the present paper{zk(F )}lk=1 (l�∞) is the set of all the characteristic values ofF. If l is
finite,we putz−1

k (F ) = 0, k = l + 1, l + 2, . . . . Besides,z−1
k (F ) means 1

zk(F )
.

Definition 1.1. The quantity

zvF (H) = max
j

min
k

|z−1
k (F ) − z−1

j (H)|

will be called the variation of characteristic values of pencilH with respect to pencilF.
Everywhere below p is a natural number satisfying the inequality

p >
1

2�
.

Since��1, we havep�1. Furthermore, let

‖�F ‖p := [Trace(�pF )]1/p

be the Neumann–Schatten norm of�F . Put

wp(F ) := 2‖�F ‖1/2p + 2[n(�(2�p) − 1)]1/2p,
where�(.) is the Riemann Zeta function. Denote also

�p(F, y) :=
p−1∑
k=0

wk
p(F )

yk+1 exp

[
1

2
+ w

2p
p (F )

2y2p

]
(y > 0) (1.3)
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and

q :=
[ ∞∑
k=1

‖Ak − Bk‖2
]1/2

. (1.4)

2. Preliminaries

In this section, we present preliminary results which are used in the next sections.
LetAandBbe linear operators in a separable Hilbert spaceEwith a norm‖.‖E . Let�(A)

denote the spectrum ofA. Then the quantity

svA(B) := sup
�∈�(B)

inf
�∈�(A)

|� − �|

is called the spectral variation ofBwith respect toA.
Denote byC2p the Neumann–Schatten ideal of compact operators inE with the finite

norm‖.‖2p.

Theorem 2.1. Let the condition

A ∈ C2p (p = 1,2, . . .)

hold.ThensvA(B)� ỹp(A,B), whereỹp(A,B) is the extreme right-hand(positive)root
of the equation

1 = ‖A − B‖E
p−1∑
m=0

(2‖A‖2p)m
zm+1 exp

[
1

2
+ (2‖A‖2p)2p

2z2p

]
.

For the proof see Theorem 8.5.4 from[6].
In particular, letE = Cn be the Euclidean space. The norm for matrices is understood

in the sense of the operator norm. Then thanks to Theorem 4.4.1 from [6] we have:

Theorem 2.2. Let A and B ben × n-matrices.Then

svA(B)�z(A,B),

wherez(A,B) is the extreme right-hand(unique non-negative)root of the algebraic equa-
tion

zn = ‖A − B‖
n−1∑
j=0

zn−j−1‖A‖j2√
j ! .

Below we also use the following result.
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Lemma 2.3. The extreme right-hand rootz0 of the equation

zn = P(z) :=
n−1∑
j=0

cj z
n−j−1 (cj ≡ const�0)

is non-negative and the following estimates are valid:

z0�[P(1)]1/n if P(1)�1

and

1�z0�P(1) if P(1)�1.

For the proof see Lemma 1.6.1 from[6].
In addition, we will use the following result.

Lemma 2.4. The extreme right(unique positive)root za of the equation

p−1∑
j=0

1

yj+1 exp

[
1

2

(
1+ 1

y2p

)]
= a (a ≡ const > 0)

satisfies the inequalityza �	p(a), where

	p(a) :=
{
pe/a if a�pe,

[ln(a/p)]−1/2p if a > pe.

cf. [6, Lemma 8.3.2].

3. Statement of the main result

Theorem 3.1. Let�p(F, y) and q be defined by(1.3)and(1.4),respectively.Then,under
conditions(1.1), (1.2)andp > 1/2� we havezvF (H)�rp(F,H), whererp(F,H) is the
unique positive(simple)root of the equation

q�p(F, y) = 1. (3.1)

That is,for any characteristic valuez(H) of H there is a characteristic valuez(F ) of F,
such that

|z(H) − z(F )|�rp(F,H)|z(H)z(F )|, (3.2)

providedl = ∞. If l < ∞, then either(3.2)hold or

|z(H)|� 1

rp(F,H)
. (3.3)

The proof of this theorem is presented in the next section.
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Corollary 3.2. Let conditions(1.1)and(1.2)be fulfilled.ThenzvF (H)�	p(F, h),where

	p(F,H) :=
{
epq if wp(F )�epq,

wp(F )[ln(wp(F )/qp)]−1/2p if wp(F) > epq.

Indeed, substitute the equalityy = xwp(F ) into (3.1) and apply Lemma 2.4. Then we
haverp(F,H) �	p(F,H). Now, the required result is due to the previous theorem.
Put

�j = {z ∈ C : q�p(F, |z−1 − z−1
j (F )|)�1} (j = 1, . . . , l)

and

�0 = {z ∈ C : q�p(F, 1/|z|)�1}

=

z ∈ C :

p−1∑
k=0

wk
p(F )|z|k+1 exp

[
1

2
(1+ w

2p
p (F )|z|2p)

]
�1


 .

Since�p(F, y) is monotone, Theorem 3.1 yields.

Corollary 3.3. Under conditions(1.1)and (1.2),all the characteristic values of H are in
the set

⋃∞
j=1�j , providedl = ∞. If l < ∞, then all the characteristic values of H are in

the set
⋃l

j=0�j .

Let us consider approximations of an entire functionH by the polynomial pencils

Hm(�) =
m∑

k=0

Bk�
k

(k!)� (B0 = I, � ∈ Cn;m = 1,2, . . .).

Put

qm(H) :=
[ ∞∑
k=m+1

‖Bk‖2
]1/2

,

wp(Hm) = 2

∣∣∣∣∣
∣∣∣∣∣
m∑

k=1

BkB
∗
k

∣∣∣∣∣
∣∣∣∣∣
1/2

p

+ 2[n(�(2�p) − 1)]1/2p

and

	(p,m,H) :=
{
epqm(H) if wp(Hm)�epqm(H),

wp(Hm)[ln(wp(Hm)/pqm(H))]−1/2p if wp(Hm) > epqm(H).

Define�p(Hm) according to (1.3). Taking,Hm instead ofF in Theorem 3.1 and Corollary
3.2, we get:

Corollary 3.4. LetHbedefinedby(1.1b)andsatisfy(1.2).Letrm(H)be theuniquepositive
root of the equation

qm(H)�p(Hm, y) = 1.
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Then either for any characteristic valuez(H) of H there is a characteristic valuez(Hm) of
polynomial pencilHm, such that∣∣∣∣ 1

z(H)
− 1

z(Hm)

∣∣∣∣ �rm(H)�	(p,m,H)

or

|z(H)|� 1

rm(H)
� 1

	(p,m,H)
.

Furthermore, ifl = ∞, relations (3.2) imply the inequalities

|z(F )| − |z(H)|�rp(F,H)|z(H)||z(F )|�	p(F,H)|z(H)||z(F )|.
Hence,

|z(H)|�(rp(F,H)|z(F )| + 1)−1|z(F )|�(	p(F,H)|z(F )| + 1)−1|z(F )|.
This inequality yields the following result.

Corollary 3.5. Under conditions(1.1), (1.2)and l = ∞, for a positive numberR0, let F
have no characteristic values in the disc{z ∈ C : |z|�R0}. Then H has no characteristic
values in the disc{z ∈ C : |z|�R1} with

R1 = R0

	p(F,H)R0 + 1
or R1 = R0

rp(F,H)R0 + 1
.

Let us assume that under (1.1), there is a constantd0 ∈ (0, 1), such that

lim
k→∞

k
√‖Ak‖ < 1/d0 and lim

k→∞
k
√‖Bk‖ < 1/d0

and consider the functions

F̃ (�) =
∞∑
k=0

Ak(d0�)k

(k!)� and H̃ (�) =
∞∑
k=0

Bk(d0�)k

(k!)� .

That is,F̃ (�) ≡ F(d0�) andH̃ (�) ≡ H(d0�). So functionsF̃ (�) andH̃ (�) satisfy condi-
tions (1.2). Moreover,

wp(f̃ ) = 2

∣∣∣∣∣
∣∣∣∣∣

∞∑
k=1

d2k0 Ak(A
k)∗
∣∣∣∣∣
∣∣∣∣∣
1/2

p

+ 2[n(�(2�p) − 1)]1/2p.

Since
∞∑
k=1

d2k0 ‖Ak − Bk‖2 < ∞,

we can directly apply Theorem 3.1 and Corollary 3.2 taking into account thatd0zk(f̃ ) =
zk(F ), d0zk(H̃ ) = zk(H).
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4. Proof of Theorem 3.1

For a finite integerm, consider the matrix polynomials

P(�) =
m∑

k=0

Ak�
m−k

(k!)� and Q(�) =
m∑

k=0

Bk�
m−k

(k!)� (A0 = B0 = I ). (4.1)

In addition,{zk(P )}nk=1 and{zk(Q)}mk=1 are the sets of all the characteristic values ofPand
Q, respectively, taken with their multiplicities. Introduce the block matrices

Ãm =




−A1 −A2 . . . −Am−1 −Am

1

2� In 0 . . . 0 0

0
1

3� In . . . 0 0

. . . . . . .

0 0 . . .
1

m� In 0




and

B̃m =




−B1 −B2 . . . −Bm−1 −Bm

1

2� In 0 . . . 0 0

0
1

3� In . . . 0 0

. . . . . . .

0 0 . . .
1

m� In 0



.

Lemma 4.1. The relationdetP(�) = det(�Imn − Ãm) is true.

Proof. Let z0 be a characteristic value ofP. Then

m∑
k=0

zm−k
0

(k!)� Akv = 0,

wherev is the corresponding eigenvector ofP. Put

xk = zm−k
0

(k!)� v (k = 1, . . . , m).

Then

z0xk = xk−1/k
� (k = 2, . . . , m)

and
m∑

k=0

zm−k
0

(k!)� Akv =
m∑

k=1

Akxk + z0x1 = 0.
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So vectorx = (x1, . . . , xm) satisfies the equatioñAmx = z0x. If the spectrum ofP(.) is
simple, the lemma is proved. If detP(.) has non-simple roots, then the required result can
be proved by a small perturbation.�

Put

q(P,Q) :=
[

m∑
k=1

‖Ak − Bk‖2
]1/2

and

wp(P ) := 2

∣∣∣∣∣
∣∣∣∣∣
m∑

k=1

AkA
∗
k

∣∣∣∣∣
∣∣∣∣∣
1/2

p

+ 2[n(�(2�p) − 1)]1/2p

for a naturalp > 1/2�; �p(P, y) is defined according to (1.3).

Lemma 4.2. For any characteristic valuezm(Q) of Q(z), there is a characteristic value
z(P ) of P,such that

|z(P ) − z(Q)|�rp(Q, P ),

whererp(Q, P ) be the unique positive root of the equation

q(P,Q)�p(P, y) = 1. (4.2)

Proof. Due to the previous lemma

�k(Ãm) = zk(P ), �k(B̃m) = zk(Q) (k = 1,2, . . . , mn), (4.3)

where�k(Ãm), �k(B̃m), k = 1, . . . , nm are the eigenvalues with their multiplicities ofÃm

andB̃m, respectively. Clearly,

‖Ãm − B̃m‖ = q(P,Q).

Due to Theorem 2.1, for any�j (B̃m), there is a�i (Ãm), such that

|�j (B̃m) − �i (Ãm)|�yp(Ãm, B̃m), (4.4)

whereyp(Ãm, B̃m) is the unique positive root of the equation

‖Ãm − B̃m‖
p−1∑
k=0

(2‖Ãm‖2p)k
yk+1 exp

[(
1+ (2‖Ãm‖2p)2p

y2p

)/
2

]
= 1.
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But Ãm = M + C, where

M=




−A1 −A2 . . . −am−1 −am
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 0


 and C=




0 0 . . . 0 0
1

2� In 0 . . . 0 0

0
1

3� In . . . 0 0

. . . . . . .

0 0 . . .
1

m� In 0



.

Therefore, with the notation

c =
m∑

k=1

AkA
∗
k,

we have

MM∗ =




c 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .

0 0 . . . 0 0


 and CC∗ =



0 0 . . . 0 0
0 In/22� . . . 0 0
0 0 ... 0 0
. . . . . . .

0 0 . . . 0 In/m
2�


 .

Clearly,

‖M‖22p =
∣∣∣∣∣
∣∣∣∣∣
m∑

k=1

AkA
∗
k

∣∣∣∣∣
∣∣∣∣∣
p

.

In addition,

Trace(CC∗)p = n

m∑
k=2

1/k2p�.

Thus,

‖C‖2p =
[
n

m∑
k=2

1

k2p�

]1/2p
.

Hence

‖Ãm‖2p�
∣∣∣∣∣
∣∣∣∣∣
m∑

k=1

Ak A
∗
k

∣∣∣∣∣
∣∣∣∣∣
1/2

p

+
[
n

m∑
k=2

1

k2p�

]1/2p
. (4.5)

This and (4.3) prove the lemma.�

Proof of Theorem 3.1.Consider the polynomial pencils

Fm(�) =
m∑

k=0

Ak�
k

(k!)� and Hm(�) =
m∑

k=0

Bk�
k

(k!)� . (4.6)
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Clearly,�mFm(1/�) = P(�) andHm(1/�)�
m = Q(�). So

zk(P ) = 1/zk(Fm), zk(Q) = 1/zk(Hm). (4.7)

Take into account that the roots continuously depend on coefficients, we have the required
result, letting in the previous lemmam → ∞. �

5. Perturbations of polynomial pencils

In this section, we improveTheorem3.1 in the case of polynomial pencils.Again consider
the polynomial pencils defined by (4.1). Put


(P ) =
[
Trace

(
m∑

k=1

AkA
∗
k

)
+ n(m − 1)

]1/2

and

�(P, y) :=
nm−1∑
k=0


k(P )

yk+1
√
k! (y > 0).

In addition, as above

q(P,Q) =
[

m∑
k=1

‖Ak − Bk‖2
]1/2

.

Theorem 5.1. Let P and Q be defined by(4.1).Then for any characteristic valuez(Q) of
Q(z), there is a characteristic valuez(P ) of P(z), such that

|z(P ) − z(Q)|�r(P,Q), (5.1)

wherer(P,Q) is the unique positive root of the equation

q(P,Q)�(P, y) = 1. (5.2)

Proof. Take matricesÃm, B̃m, defined in Section3, with � = 0. Due to Theorem 2.2, for
any�j (B̃m), there is a�i (Ãm), such that

|�j (B̃m) − �i (Ãm)|�x(Ãm, B̃m),

wherex(Ãm, B̃m) is the unique positive root of the equation

‖Ãm − B̃m‖
mn−1∑
k=0

‖Ãm‖k2
yk+1

√
k! = 1.

Clearly, ‖Ãm‖2 = 
(P ). Hence, x(Ãm, B̃m)�r(P,Q). This and (4.3) proves the
theorem. �
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Denote

p0 := q(P,Q)

mn−1∑
k=0


k(P )√
k! = q(P,Q)�(P, 1)

and

	0(P,Q) :=
{

mn−1
√
p0 if p0�1,

p0 if p0 > 1.

Due to Lemma2.3,r(P,Q)�	0(P,Q). Now Theorem 5.1 implies:

Corollary 5.2. Let P and Q be defined by(4.1).Then for any characteristic valuez(Q) of
Q(z), there is a characteristic valuez(P ) of P(z), such that|z(P ) − z(Q)|�	0(P,Q).

In particular, let

P(�) = �I + A1, Q(�) = �I + B1. (5.3)

Then
2(P ) = Trace(A1A
∗
1) = ‖A1‖22 and

�(P, y) = �1(y) :=
n−1∑
k=0

‖A1‖k2
yk+1

√
k! (y > 0).

In addition,q(P,Q) = q1 := ‖A1 − B1‖. Due to Theorem5.1, for anyz(Q) there is a
z(P ), such that|z(P ) − z(Q)| �r0, wherer0 is the unique positive root of Eq. (5.2) with
q(P,Q) = q1 and�(P, y) = �1(y). Denotep1 := q1�1(1) and

	1 :=
{

n−1
√
p1 if p1�1,

p1 if p1 > 1.

Due toCorollary 5.2, under (5.3), for anyz(Q), there is az(P ) such that|z(P )−z(Q)|�	1.
Let us derive bounds for the characteristic values ofQ. Let Bj = (b

(j)
sk )

n
s,k=1 (j =

1, . . . , m) be arbitraryn × n-matrices.
In addition, letvj ,wj anddj be theupper nilpotent, lower nilpotent and diagonal parts

of Bj . So Bj = vj + dj + wj . TakeAj = vj + dj . That is,Aj is the upper triangular part
of Bj andP is the upper triangular part ofQ. Moreover, we have

q(P,Q)�qw :=
[

m∑
k=1

‖wk‖2
]1/2

,


(P ) = 
d :=

 m∑
j=1

∑
1� l�k�n

|b(j)lk |2 + n(m − 1)



1/2

,

p0 = p̃ := qw

mn−1∑
k=0


kd√
k!
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and	0(P,Q) = 	̃, where

	̃ :=
{

mn−1
√
p̃ if p̃�1,

p̃ if p̃ > 1.
(5.4)

SinceP is a triangular matrix, characteristic values ofP are the rootsR1k, . . . , Rmk of the
diagonal polynomials

�m + b
(1)
kk �m−1 + · · · + b

(m)
kk (k = 1, . . . , n).

Due to Corollary 5.2, we get:

Corollary 5.3. All the characteristic values of Q lie in the union of the sets

{z ∈ C : |z − Rjk|� 	̃} (j = 1, . . . , m; k = 1, . . . , n).

Let us compare this result with the well-known generalized Hadamard theorem, cf.[2,3]
and [4, Section 14.5].As it wasmentioned above, the spectra ofPand blockmatrixÃm with
� = 0 coincide. The generalized Hadamard theorem does not assert that the block matrix
Ãm with non-singular triangular blocksAj is invertible. That is, it does not assert that the
pencilP is invertible, ifz is not a root of the diagonal entries ofP.At the same timeCorollary
5.3 asserts that the pencilP is invertible, providedz is not a root of the diagonal entries ofP.
Thus, our results improve the generalized Hadamard theorem when coefficients of pencils
are “close” to triangular matrices.

6. Example

Let us consider the pencil

H(z) = In + C1z + z2ez�C2 (0< � = const < 1)

with n × n-matricesC1, C2. As it is well-known, such matrix quasipolynomials play an
essential role in the theory of differential-differenceequations, cf.[11].Rewrite this function
in the form (1.1b) with� = 1, and

B1 = C1, Bk = C2�k−2k(k − 1) (k = 2, 3, . . .).

PutH2(�) = In + C1z + C2z
2 and

q2(H) = ‖C2‖
[ ∞∑
k=3

�2(k−2)k2(k − 1)2
]1/2

.

This series is easily calculated. Furthermore, put

w1(H2) = 2[Trace(C1C
∗
1 + 4C2C

∗
2)]1/2 + 2[n(�(2) − 1)]1/2.

Then due to Corollary3.3, we can assert that all the zeros ofH are in the set
⋃2n

j=0�j ,
where

�0 = {z ∈ C : q2(H)|z| exp[(1+ w2
1(H2)|z|2)/2]�1}
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and

�j =
{
z ∈ C : q2(H)e1/2|z−1

j (H2) − z−1|−1 exp

[
w2
1(H2)

2|z−1
j (H2) − z−1|2

]
�1

}

(j = 1, . . . ,2n).

Besides,zj (H2) are the roots of the polynomial detH2(�) = det(In + C1z + C2z
2).
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