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Abstract

Entire matrix-valued functions of a complex argument (entire matrix pencils) are considered.
Bounds for spectral variations of pencils are derived. In particular, approximations of entire pen-
cils by polynomial pencils are investigated. Our results are new even for polynomial pencils.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and notation

As it is well-known, matrix pencils play an essential role in various applications, see,
for instance[4,11,17,15] and references therein. Perturbations of the spectrum of matrix
pencils were investigated in many works, cf. [1,8-10,13], etc. Mainly, polynomial pencils
were considered. In particular, the paper [1] is devotelihiar matrix pencils. Besides,
an error bound for eigenvalues is established. In [9], stability of invariant subspaces of
regular matrix pencils is considered. In [10], upper and lob@rndsare derived for the
absolute values of the eigenvalues of matrix polynomials. The bounds are based on norms
of coefficient matrices. They generalize some well-known bounds for scalar polynomials
and single matrices. In [13], and references given therein, perturbations of eigenvalues of
diagonalizable matrix pencilgith real spectraare investigated.

* This research was supported by the Kamea Fund of Israel.
E-mail addressgilmi@bezeqint.net.

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.06.004


http://www.elsevier.com/locate/jat
mailto:gilmi@bezeqint.net

116 M.I. Gil'/ Journal of Approximation Theory 136 (2005) 115-128

Recall that the variation of the zeros of general analytic functions under perturbations
was investigated, in particular, by Rosenblofd@]. He established conditions that provide
the existence of zeros of a perturbed function in a given domain. In [5], a new approach to
perturbations of scalar-valued entire functions was suggested. It is based on estimates for
the norm of the resolvent of a Hilbert—Schmidt operator.

In the present paper, we consider spectrum perturbations of entire matrix pencils. Espe-
cially, we investigate approximations of entire pencils by polynomial pencils. Our results
are new even in the case of polynomial pencils. They generalize the main result from [5]. It
should be noted that the generalization requires additional mathematical tools. A few words
about the contents. In Section 2 some auxiliary results are collected. The main result of the
paper—Theorem 3.1—is presented in Section 3. The proof of Theorem 3.1 is presented in
Section 4. Perturbations of polynomial matrix pencils are discussed in Section 5. In the case
of polynomial pencils we improve Theorem 3.1. In Section 6, an example is given.

Let C" be a Euclidean space with the Euclidean ndjrfinand the unit matrix,,. Let A,

Br (k=1,2,...) ben x n-matrices. Consider the matrix pencils

>, Ak
F) =) Goy (Ao=1n2€C) (1.1a)
k=0
and
> Bk/lk
H) =) &y (Bo=1h.ieC) (1.1b)
k=0
with a positive
<L
Assume that
o0 o
D A <00, Y Bl < oo. (1.2)
k=0 k=0

Thus,

o0
O =) AiA}
k=1

is ann x n-matrix. The asterisk means the adjointness.
Recall that a family of matrices of the form

o0
[Z Ak)\,k . ;Le C} 5
k=0

where Ax; k = 0,1, ... are constant matrices, is called an entire pencil, if the series
converges for arbitrary finité € C. In particular,

{Ao+ /A1 : A € C}
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is called dinear pencil. PutM g (r) := max;—- | F(z)[|(r > 0). The limit

— InlnM
p (F):= Tm Inin Mr(r)
r—00 In r
is the order ofF. Relations (1.1), (1.2) mean that we consider finite order entire pencils.
Indeed, ify = 1, then we havp(F) <1.If y < 1, then due to Holder inequality, from (1.1a)
it follows that

00 M|k 00 10 r oo |2;|k/7 Y
R Z Z —kp Z L
”F(/L)” s k=0 (k')y s |:k=0 ? } |: k! :|

k=0

A 1/y
<me (1 1/p = 1),

where

00 1/p
mo = supl| A, m1=mo[22_k”] :
k
k=0

So functionF has order no more than {L/We write F andH in the form (1.1), since it
allows us to formulate the main result of the paper.

A zerozy (F) of detF (z) is called a characteristic value Bf Our main problem is: ifA;
and By, are close, how close are the characteristic valuéttofthose of=? Everywhere in
the present pape{zk(F)}ﬁczl (I <o) is the set of all the characteristic valuesFofif | is

finite,we putz; *(F) = 0,k =1 + 1,1+ 2, ... . Besidesz; *(F) meansZk%F).
Definition 1.1. The quantity
zvr(H) = maxmin 2 H(F) — 2 (D)
J

will be called the variation of characteristic values of pehtivith respect to penci.
Everywhere below p is a natural number satisfying the inequality

1

Sincey <1, we havep > 1. Furthermore, let
10Fl, == [Trace67)1"/7
be the Neumann—-Schatten normfief. Put
wp(F) = 2|0F ;% + 2n(C 2yp) — DIV,

where((.) is the Riemann Zeta function. Denote also

p=1 k(F 2p
wk (F) [1 w (F):| b=0

Y, (F,y) = o &P 5+
p k2=(:J yk+l 2 2y2p

(1.3)
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and

00 1/2
q:= [Z 1Ak — Bknz] : (1.4)
k=1

2. Preliminaries

In this section, we present preliminary results which are used in the next sections.
LetAandB be linear operators in a separable Hilbert sgaegth a norm||.||£. Leta(A)
denote the spectrum &f Then the quantity

sva(B) := sup inf |u—/|
pea(B) A€a(A)

is called the spectral variation Bfwith respect tcA.
Denote byC>, the Neumann-Schatten ideal of compact operatoEswith the finite
normil.[2p.

Theorem 2.1. Let the condition
AeCy (p=1,2,..)

hold. Thensva (B)<¥,(A, B), wherey,(A, B) is the extreme right-han(positive)root
of the equation

p—1 )
1=||A—-B|g Z M exp|:_+Mi|'

fr S 2 2:2P

For the proof see Theorem 8.5.4 frd6j.
In particular, letE = C" be the Euclidean space. The norm for matrices is understood
in the sense of the operator norm. Then thanks to Theorem 4.4.1 from [6] we have:

Theorem 2.2. Let A and B be: x n-matrices.Then
sva(B)<z(A, B),

wherez(A, B) is the extreme right-han@inique non-negativapot of the algebraic equa-
tion

2 Al

Z
" =|A-B]| —

Below we also use the following result.
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Lemma 2.3. The extreme right-hand roat of the equation
n—1 '
"= P(2) = Z c,-z"_"_l (cj = const =0)
j=0

is non-negative and the following estimates are valid:
<[P if PH<L

and
1<z0< P(1) if P(1)>1.

For the proof see Lemma 1.6.1 frd6i.
In addition, we will use the following result.

Lemma 2.4. The extreme righfunique positivejoot z, of the equation

p—1

1 1 1
ZWeXpE 1+y7p =a (a =const >0)

j=0
satisfies the inequality, <d,(a), where

peja if a< pe,

5p(a) = { [|n(a/p)]—1/217 if a > pe.

cf. [6, Lemma 8.3.2].

3. Statement of the main result

Theorem 3.1. Letlﬁp(F, y) and g be defined b§1.3)and(1.4),respectivelyThen,under
conditions(1.1), (1.2)and p > 1/2y we havezvr (H) <r,(F, H), wherer,(F, H) is the
unique positivgsimple)root of the equation

qi,(F,y) =1. .1

That is,for any characteristic value(H) of H there is a characteristic valug(F) of F,
such that

l2(H) — z(F)|<rp(F, H)|z(H)z(F)], (3.2)

provided! = co. If I < o0, then either(3.2) hold or

l2(H)| > (3.3)

rp(F, H)

The proof of this theorem is presented in the next section.
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Corollary 3.2. Let conditiong1.1)and(1.2)be fulfilled. Thenzvr(H) <4, (F, h), where

_ Jepq if w,(F)<epq,
0p(F, H) := { w, (F)[IN(w,(F)/gp)1~Y2P if w,(F) > epq.

Indeed, substitute the equality= xw,(F) into (3.1) and apply Lemma 2.4. Then we
haver,(F, H) <¢,(F, H). Now, the required result is due to the previous theorem.
Put

Qj={zeCiqy,(F =t -z, FD=1 (j=1...D
and
Qo=1{z € C:qy,(F.1/lz)>1)

p—1

1

= {z eC: Y wh(F)zf*t exp[§(1+ wf,p(F)lzlzl’)} 21} :
k=0

Sincexpp(F, y) is monotone, Theorem 3.1 yields.

Corollary 3.3. Under conditiong1.1)and(1.2),all the characteristic values of H are in
the set J72; Q;, provided! = oo. If I < oo, then all the characteristic values of H are in

the set J,_, ;.

Let us consider approximations of an entire functibby the polynomial pencils

O Bt .
Hm(z)=l;) @ (Bo=1,.eC"m=1,2...).
Put
00 1/2
qm(H) :=[ > ||Bk||2} :
k=m+1
m 1/2
wy(Hp) =21 BiBi || +2n({(2yp) — DIV
k=1 P
and
epqm(H) if w,(Hy) <epqm(H),
H) = .
o(p,m, H) {wp(Hm)[ln(wp(Hm>/pqm<H)>]1/21’ it w,(Hy) > epam(H).

Definey ,(H,,) according to (1.3). Taking,, instead ofF in Theorem 3.1 and Corollary
3.2, we get:

Corollary 3.4. LetH be defined bfi.1b)and satisfy(1.2).Letr,, (H) be the unique positive
root of the equation

qm(H)lpp(Hm, y) =1.
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Then either for any characteristic valu¢H) of H there is a characteristic valug H,,,) of
polynomial pencilH,,, such that

1
m - m grm(H)gé(psma H)
or
1
|z(H)| =

rm(H) g o(p,m, H)’
Furthermore, if = oo, relations (3.2) imply the inequalities
lz(F)| = |z(H)|<rp(F, H)|z(H)||z(F)|<0,(F, H)|z(H)||z(F)|.
Hence,
|2(H)| = (rp(F, H)|2(F)| + 1) z(F)| = (6, (F, H)|z(F)| + 1)~z (F)|.
This inequality yields the following result.
Corollary 3.5. Under conditiong1.1), (1.2)and! = oo, for a positive numbeRy, let F

have no characteristic values in the digce C : |z] < Rg}. Then H has no characteristic
values in the dis¢z € C : |z| < R1} with

Ro Ro

Ri=—— 0 Ri=—— 20
0,(F, H)Ro+ 1 rp(F, H)Ro+1

Let us assume that under (1.1), there is a congkart (0, 1), such that
Jim Al < 1/doand  Tim /][ Bell < 1/do
—00 — 0

and consider the functions

. >\ Ax(dod)k - . Bi(doh)k
F(A):Z% and H() =Y %
i KD i Y

Thatis, F (/) = F(doA) andH (/) = H(do/). So functionsF (1) and H (1) satisfy condi-
tions (1.2). Moreover,

~ 1/2

DO dgt aAN*|| +2nC@yp) — DIV
k=1

wp(f) =2

Since
o0
2k 2
> dd | Ax — Bill? < o0,
k=1

we can directly apply Theorem 3.1 and Corollary 3.2 taking into account/ghat f) =
2k (F), dozi(H) = zi(H).
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4. Proof of Theorem 3.1

For a finite integem, consider the matrix polynomials
sm—k

n Ak & By

P(J) = ;;—o & and Q) = Z @ (Ag = Bg = I).

In addition,{zx (P)};_, and{z; (Q)};"_; are the sets of all the characteristic valueB ahd
Q, respectively, taken with their multiplicities. Introduce the block matrices

4.1)

—1A1 —A2 ... —A_1 —A,
—I, 0 ... 0 0
2/ 1
Ay = 0 @In - 0 0
. . 1.
0 0o ... —I, 0
m7
and
IBl —By ... —B,-1 —By,
-1, 0 ... 0 0
2V 1
B, = 0 3 I, 0 0
. . 1. .
0 o ... —1I, 0
m/

Lemma 4.1. The relationdet P (1) = det(Al,,, — A,,) is true.

Proof. Let zg be a characteristic value 8 Then

m mek
> B aw=0
k=0 ( )

whereuv is the corresponding eigenvectorffPut

26" —*
X = (k')/ k=1,...,m).
Then

zoxk = xk—1/k7  (k=2,...,m)

and

m m m
Z 20 kUZZAka +zox1 = 0.

(k1) P
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So vectorx = (x1, ..., x,,) satisfies the equatioA,,x = zox. If the spectrum ofP(.) is
simple, the lemma is proved. If d€t(.) has non-simple roots, then the required result can
be proved by a small perturbation]

Put

m 1/2

q(P. Q) = [Z 1Ak — Bkuz}
k=1

and
m 1/2

wy(P) =23 AAf||  +2n@yp) - DIV

k=1

p

for a naturalp > 1/2y; x//p(P, y) is defined according to (1.3).

Lemma 4.2. For any characteristic value,, (Q) of Q(z), there is a characteristic value
z(P) of P,such that

[z(P) — z(Q)I<rp(Q, P),
wherer,(Q, P) be the unique positive root of the equation

q(P, Q) ,(P,y) =1 (4.2)
Proof. Due to the previous lemma

Je(Am) = 2 (P),  Jx(Bw) =2(Q) (k=1,2,...,mn), (4.3)

wherei (Am), ix(Bw), k = 1, ..., nm are the eigenvalues with their multiplicities @f,
andB,,, respectively. Clearly,

A — Bull = q(P, Q).
Due to Theorem 2.1, for any; (B,,), there is &, (A,,), such that
12;(Bm) — 2 (Ap)| <yp(Am, Bw), (4.4)

wherey, (A,,, B,) is the unique positive root of the equation

2|| A ll2p)* 2l Apll2p)?P
i B ”Z(” k+||1zp> Xp[<1+(n y2||pzp) )/2}21_
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ButA,, = M + C, where

—A1 —Ap ...
M— 0 0
0 0
Therefore, with the notation
m
c=Y" A4},
k=1
we have
c0...00
MM — 00...00
00...00
Clearly,

m
IM113, = HZ ArAY
k=1

In addition,

m
TracgCC*)? =n Z 1/ k%P7,

k=2
Thus,

o1
IClI2p = [n ’; T

Hence

m

> A A

[Amll2p <

k=1

This and (4.3) prove the lemmall

Proof of Theorem 3.1. Consider the polynomial pencils

"L Ak
Fu (/1) = 5

M.I. Gil'/ Journal of Approximation Theory 136 (2005) 115-128

0 0
1
—apm-1 —dm E L, 0
1
0 0 and C= 0 —1,. 0 O
. . 37
0 0 ) L
0 0 .—=1,0
m/
0O O 0O O
01,/2% ...0 0
and CC*=|0 O 0 O
0 0 ...01I,/m?%
11/2p
1/2 moq 1/2p
p k=2
m 1k
By 4
and H,(1) = . 4.6
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Clearly, /" F,,,(1/4) = P(A) andH,,(1/)A" = Q(/). So
2w(P) = 1/z(Fp),  z2(Q) = 1/z(Hp). 4.7)

Take into account that the roots continuously depend on coefficients, we have the required
result, letting in the previous lemma — oo. [

5. Perturbations of polynomial pencils

In this section, we improve Theorem 3.1 in the case of polynomial pencils. Again consider
the polynomial pencils defined by (4.1). Put

m 1/2
n(P) = |:Trace<z AM,’;) +n(m — 1):|

k=1

and
nm—1 ”k(P)
Y(P,y) = Z W (y > 0).

In addition, as above

m 1/2
q(P, Q) = [Z 1Ak — Bk||2:| :
k=1

Theorem 5.1. Let P and Q be defined k§4.1). Then for any characteristic valug Q) of
0(z), there is a characteristic valug(P) of P(z), such that

[z(P) —z(Q)I<r(P, Q), (5.1)
wherer (P, Q) is the unique positive root of the equation
q(P, Q)P y)=1. (5.2)

Proof. Iake matricesim,f?m, defined in Sectio3, withy = 0. Due to Theorem 2.2, for
any;j(By), there is ai; (A,), such that

V;(Em) - /lt(A~m)| <X(Ama ém)a

wherex(A,,, By, is the unique positive root of the equation

mn—1

I AmII%
B I Z k+1f_

Clearly, |Anll2 = n(P). Hence, x(A,, B,)<r(P, Q). This and (4.3) proves the
theorem. [
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Denote
mn—1 k(

po:=q(P, Q) Z 7) =q(P, QY(P, 1)

and

my/po it po<l,

Oo(P, Q) = { Do if po> 1.

Due to Lemma.3,r(P, Q) <do(P, Q). Now Theorem 5.1 implies:

Corollary 5.2. Let P and Q be defined i§¢.1). Then for any characteristic valug Q) of
0(z), there is a characteristic valug(P) of P(z), such thatz(P) — z(Q)| <do(P, Q).

In particular, let
P(J) =i+ A1, Q@)=+ By. (5.3)
Thenn?(P) = TracgA1A%) = [ A1]13 and

n—1

WP y) = Y1) =)

I A1ll5

yk+1m

In addition,q (P, Q) = g1 := ||A1 — Bi||. Due to Theorenb.1, for anyz(Q) there is a
z(P), such thatz(P) — z(Q)| <ro, Whererg is the unique positive root of Eq. (5.2) with

q(P, Q) = q1andy/(P, y) = (y). Denotep; := ¢q1/,(1) and

01 := { "Ypr if i<l

p1 if p1 > 1.

(y > 0).

Due to Corollary 5.2, under (5.3), for apyQ), there is & (P) such thafz(P) —z(Q)| < d1.
Let us derive bounds for the characteristic valueQof et B; (b(” si=1 U =
1,...,m)be arbitraryn x n-matrices.
In addition, letv;, w; andd; be theupper nilpotent, lower nilpotent and diagonal parts
of Bj.So B =v; +d; +w;. TakeA; = v; +d;. Thatis,A; is the upper triangular part
of B; andP is the upper triangular part @. Moreover, we have

m 1/2
q(P, Q)<qy := [Z ||wk||2} :

k=1

1/2
n(P) =n, = {Z > 16712+ n(m — 1)} ,

Jj=11<I<k<n

mn

- k
S
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anddo(P, Q) = &, where

S — mn*\]/; If ﬁ§1, (5 4)
' p if p>1. '
SinceP is a triangular matrix, characteristic valueshoére the rootR1y, ..., R, of the

diagonal polynomials
Mmoo b k=1,...,n).

Due to Corollary 5.2, we get:

Corollary 5.3. All the characteristic values of Q lie in the union of the sets

{zeC:lz—Rul<d} (i=1,....m; k=1,...,n).

Let us compare this result with the well-known generalized Hadamard theord)3¢f.
and [4, Section 14.5]. As it was mentioned above, the specRanftl block matrixA,, with
1 = 0 coincide. The generalized Hadamard theorem does not assert that the block matrix
A,, with non-singular triangular blocks ; is invertible. That is, it does not assert that the
pencilPis invertible, ifzis not a root of the diagonal entriesfAt the same time Corollary
5.3 asserts that the penEils invertible, providea is not a root of the diagonal entriesPf
Thus, our results improve the generalized Hadamard theorem when coefficients of pencils
are “close” to triangular matrices.

6. Example

Let us consider the pencil
H(z) = I, + C1z + 7%¢¥'C2 (0 < v = const < 1)

with n x n-matricesC1, Cz. As it is well-known, such matrix quasipolynomials play an
essential role in the theory of differential-difference equation§l ¢]. Rewrite this function
in the form (1.1b) withy = 1, and

B1=C1, Br=CoV%k-1) (k=23,...).
PutHa(A) = I, + C1z + C2z% and

00 1/2
g2(H) = | C2|| [Z e 1)2} :

k=3
This series is easily calculated. Furthermore, put
w1(Hy) = 2[TracgC1Cy 4 4C2C5)1M% 4 2[n(((2) — DIM2

Then due to Corollarg.3, we can assert that all the zeros-bére in the seU?’LO Qj,
where

Qo = {z € C: g2(H)|z| expl(1 + wi(Hp)|z|%) /2] > 1}
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and
wi(Ho)
2|Z;1(H2) —z712

Q) =z €C:qa(H)et?|z; (Hy) — 7 Hexp

(G=1,...,2n).
Besidesz; (H>) are the roots of the polynomial d&b (/) = det(/, + C1z + Co72).
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